Problem 25

Let

$$
\begin{aligned}
& u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots \\
& v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots \\
& w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
\end{aligned}
$$

Show that $u^{3}+v^{3}+w^{3}-3 u v w=1$.

Solution

The result will be proven by solving a differential equation, which is the easiest way by far. Before beginning, it is important to notice the following relations from the given series.

$$
\begin{align*}
& \frac{d u}{d x}=w \tag{1}\\
& \frac{d v}{d x}=u \tag{2}\\
& \frac{d w}{d x}=v \tag{3}
\end{align*}
$$

We could solve this system of equations for u, v, and w, but it's unnecessary. Rather, differentiate the left-hand expression implicitly with respect to x and then substitute (1), (2), and (3).

$$
\begin{aligned}
\frac{d}{d x}\left(u^{3}+v^{3}+w^{3}-3 u v w\right) & =3 u^{2} \cdot \frac{d u}{d x}+3 v^{2} \cdot \frac{d v}{d x}+3 w^{2} \cdot \frac{d w}{d x}-3\left(\frac{d u}{d x} v w+u \frac{d v}{d x} w+u v \frac{d w}{d x}\right) \\
& =3 u^{2} \cdot w+3 v^{2} \cdot u+3 w^{2} \cdot v-3\left(w^{2} v+u^{2} w+v^{2} u\right) \\
& =3 u^{2} w+3 v^{2} u+3 w^{2} v-3 w^{2} v-3 u^{2} w-3 v^{2} u \\
& =0
\end{aligned}
$$

The differential equation to solve is therefore

$$
\frac{d}{d x}\left(u^{3}+v^{3}+w^{3}-3 u v w\right)=0
$$

Integrating both sides, we get

$$
u^{3}+v^{3}+w^{3}-3 u v w=C,
$$

where C is an arbitrary constant. We can determine this constant conveniently by setting $x=0$. In this case, $u=1, v=0$, and $w=0$. Thus,

$$
1=C
$$

and the desired result is obtained.

$$
u^{3}+v^{3}+w^{3}-3 u v w=1
$$

